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We study eigenvalues and eigenvectors associated with a complex
squrare matrix. These are useful in the study of canonical forms of a
matrix under similarity and in the study of quadratic forms.

They have applications in many subjects like Geometry, Mechanics,
Astronomy, Engineering, Economics and Statistics.
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For any n × n matrix A, consider the polynomial

χA(λ) := |λI − A| =

∣∣∣∣∣∣∣∣
λ− a11 −a12 · · · −a1n
−a21 λ− a22 · · · −a2n
· · · · · · · · · · · ·
−an1 −an2 · · · λ− ann

∣∣∣∣∣∣∣∣ . (1)

Clearly this is a monic polynomial of degree n.

By the fundamental theorem of algebra, χ(A) has exactly n (not
necessarily distinct) roots.

χA(λ) the characteristic polynomial of
A

χA(λ) = 0 the characteristic equation of A

the roots of χA(λ) the characteristic roots of A

distinct roots of χA(λ) the spectrum of A
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The constant terms and the coefficient of λn−1 in χA(λ) are (−1)n|A|
and tr(A).

The sum of the characteristic roots of A is tr(A) and the product of
the characteristic roots of A is |A|.
Since λI − AT = (λI − A)T , characteristic polynomials of A and AT

are the same.

Since λI − P−1AP = P−1(λI − A)P, similar matrices have the same
characteristic polynomials.
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If A is (upper or lower) triangular then χA(λ) = Πn
i=1(λ− aii ) and the

characteristic roots of A are the diagonal entries of A.

Finding the characteristic roots of a matrix is not easy in general,
since there is no easy way of finding the roots of a polynomial of
degree greater than 3.

Just like determinant, characteristic polynomial canbe defined for a linear
operator φ on a vector space V as the characteristic polynomial of the
matrix of φ with respect to any basis of V .

Suppose A and B are matrices of a linear operator φ with respect to bases
B1 and B2 of V respectively. Then χA(λ) = χB(λ).
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Theorem

Let A and B be matrices of orders m × n and n ×m respectively, where
m ≤ n. Then χBA(λ) = λn−mχAB(λ).

Proof. Let r = rank(A). There exist non-singular matrices P and Q such
that

PAQ =

[
Ir 0
0 0

]
and Q−1BP−1 =

[
C D
E G

]
,

where C is of order r × r . Then

PABP−1 =

[
C D
0 0

]
and Q−1BAQ−1 =

[
C 0
E 0

]
.
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Hence

χAB(λ) = χPABP−1(λ) =

∣∣∣∣ λIr − C −D
0 λIm−r

∣∣∣∣ = |λIr − C |λm−r

and

χBA(λ) = χQBAQ−1(λ) =

∣∣∣∣ λIr − C 0
−E λIn−r

∣∣∣∣ = |λIr − C |λn−r .

Thus χBA(λ) = λn−mχAB(λ).

For any two n× n matrices A and B, the characteristic polynomials of
AB and BA are the same.

If AB is not square, the non-zero characteristic roots of AB are the
same as those of BA.
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Definition

A complex number α is an eigenvalue of A if there exists x 6= 0 in Cn

such that Ax = αx. Any such (non-null) x is an eigenvector of A
corresponding to the eigenvalue α.

When we say that x is an eigenvector of A we mean that x is an
eigenvector of A corresponding to some eigenvalue of A.

Two observations:

α is an eigenvalue of A iff the system (αI − A)x = 0 has a non-trivial
solution.

α is a characteristic root of A iff αI − A is singular.

Theorem

A number α is an eigenvalue of A iff α is a characteristic root of A.
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The preceding theorem shows that eigenvalues are the same as
characteristic roots. However, by ‘the characteristic roots of A’ we mean
the n roots of the characteristic polynomial of A whereas ‘the eigenvalues
of A’ would mean the distinct characteristic roots of A.

Equivalent names:

Eigenvalues proper values, latent roots, etc.

Eigenvectors characteristic vectors, latent vectors, etc.
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Theorem

Let β an eigenvalue of A and f (λ) be a polynomial. Then f (β) is an
eigenvalue of f (A).

Proof. Let x be an eigenvector of A corresponding to β. Then Ax = βx .
Premultiplying by A, we get A2x = β2x . Proceeding like this we get
Akx = βkx for all k ≥ 0, so f (A)x = f (β)x . Since x 6= 0, f (β) is an
eigenvalue of f (A).

Theorem

Each eigenvalue of an idempotent matrix A is 0 or 1.

Proof. Let β an eigenvalue of A and let f (λ) = λ2 − λ. Then
f (A) = A2 − A = 0. By previous theorem, f (β) = 0. Hence β is 0 or 1.

More generally, if β is an eigenvalue of a matrix A and f (λ) is any
polynomial such that f (A) = 0, then f (λ) = 0.
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If α is an eigenvalue of A, the set of all eigenvectors of A corresponding to
α, together with 0, forms N(αI − A), called the eigen space of A
corresponding to α and is denoted by ES(A, α).

dim[ES(A, α)] is called the geometric multiplicity of α with respect to
A. Note that ES(A, 0) = N(A) and ES(A, α) ⊆ C (A) if α 6= 0.

Another type of multiplicity of an eigenvalue α of A:

The number of times α appears as a root of the characteristic equation of
A. This is called the algebraic multiplicity of α with respect to A.
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Relation between the two multiplicities:

Let V be a vector space having dimension n.

The sum of albraic multiplicities is equal to the dimension of V , n.

If α1, α2, . . . , αk are the distinct eigenvalues of an n × n matrix A
with geometric multiplicities n1, n2, . . . , nk respectively, then
n1 + · · ·+ nk ≤ n.

Theorem

For any eigenvalue α of A, the algebraic multiplicity of α with respect to A
is not less than the geometric multiplicity of α with respect to A.
That is, sim[ES(A, α)] is at most the algebraic multiplicity of α with
respect to A. (or) The algebraic multiplicity of α with respect to A is at
least sim[ES(A, α)].
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Proof of the theorem

Let {x1, x2, . . . , xk} be a basis of ES(A, α) and {x1, x2, . . . , xn} an
extension to a basis of Cn. Then P := [x1 : x2 : · · · : xn] is non-singular and

P−1AP = P−1[Ax1 : Ax2 : · · · : Axn]

= P−1[αx1 : αx2 : · · · : αxn : Axk+1 : · · · : Axn].

Since for each j = 1, 2, . . . , k , P−1(αxj) = αP−1P∗j = αej .

P−1AP =

[
αIk B
0 C

]
for some matrices B and C .

Hence χA(λ) = χP−1AP(λ) = (λ− α)kχC (λ).

Thus the number of times α appears as a root of the characteristic
equation of A is at least k = dim[ES(A, α)].
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Let α be an eigenvalue of A.
α is regular the algebraic and the geometric multiplici-

ties of α with respect to A are equal

α is simple the algebraic multiplicity of α with respect
to A is 1

Note that every simple eigenvalue is regular.
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Theorem

Let α1, α2, . . . , αk be distinct eigenvalues of A and let x1, x2, . . . , xk be
corresponding eigenvectors. Then x1, x2, . . . , xk are linearly independent.

Corollary

If S1,S2, . . . ,Sk are the eigenspaces corresponding to distinct eigenvalues
of α1, α2, . . . , αk of a matrix A, then Let S1 + · · ·+ Sk is direct.

We have seen that if AB is a square matrix then every nonzero eigenvalue
of AB is also an eigenvalue of BA with the same algebraic multiplicity.

We now show that the geometric multiplicity also remains the same.

Theorem

Let α be a nonzero eigenvalue of a square matrix AB, where A and B
need not be square. Then α is an eigenvalue of BA with the same
geometric multiplicity.
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Proof of the theorem

Note that x ∈ ES(A, α), then ABx = αx . Hence BABx = αBx , so
Bx ∈ ES(A, α). Similarly, if x ∈ ES(A, α), then BAx = αx . Hence
ABAx = αAx , so Ax ∈ ES(A, α).

Let {x1, x2, . . . , xr} be a basis of ES(A, α). Then {Bx1,Bx2, . . . ,Bxr} be a
basis of ES(BA, α).

Claim: {Bx1,Bx2, . . . ,Bxr} is a linearly independent set. Suppose∑r
i=1 βiBxi = 0 for all i = 1, 2, . . . , r . Then {Bx1,Bx2, . . . ,Bxr} is a

linearly independent set. Hence dim[ES(BA, α)] ≥ r = dim[ES(A, α)].

Thus geometric multiplicity of α with respect to BA ≥ geometric
multiplicity of α with respect to AB.

By symmetry the reverse inequality holds and equality follows.
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The above theorem can be used effectively to find eigenvectors of BA
when AB is of smaller order than BA, for example, if (B,A) is a rank
factorization of a singular matrix.

Theorem

Let x be a non-null vectors. Then there exists an eigenvector y of A
belonging to the span of {x ,Ax ,Ax , . . .}.

Theorem

Every n × n complex matrix A is similar to an upper trigngular matrix
over C.

Proof. We prove by induction on n. If n = 1, the result holds trivially. So
assume it for matrices for order n − 1. Let A be of order n. Let α be an
eigenvalue of A; x be an eigenvector of A corresponding to α, and P be a
non-singular matrix with x as the first column.
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Then P−1AP =

[
α yT

0 C

]
, for some y ∈ Cn−1 and C ∈ Cn−1 × Cn−1.

By induction hypothesis, there exists a non-singular matrix W of order
n − 1 such that T := W −1CW is upper triangular.

Q :=

[
1 0
0 W

]
is non-singular, so PQ is non-singular, and

(PQ)−1A(PQ) =

[
1 0
0 W −1

]
=

[
α yT

0 C

]
=

[
1 0
0 W

]
=

[
α yTW
0 T

]
is upper triangular.
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The preceding theorem does not hold over R since a real matrix may not
have real eigenvalues.

Theorem

Let λ1, λ2, . . . , λn be the characteristic roots of A and f (λ) be a
polynomial. Then f (λ1), f (λ2), . . . , f (λn) are the characteristic roots of
f (A).

Proof. As any matrix is similar to a diagonal matrix, there exists a
non-singular matrix P such that T := P−1AP is upper triangular. Since A
and T have the characteristic roots, we may take tii = λi , for
i = 1, 2, . . . , n .
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By induction on k , we have T k := P−1AkP, for all k ≥ 0. if
f (λ) = a0 + a1λ+ · · ·+ asλs , we have

f (T ) = a0I + a1T + · · ·+ asT s

= a0P−1P + a1P−1AP + · · ·+ asP−1AsP

= P−1(a0I + a1T + · · ·+ asT s)P

= P−1f (A)P.

Hence f (T ) is upper triangular with f (t11, t22, . . . , tnn as the diagonal
entries, hence the characteristic roots of f (A) are f (λ1), f (λ2), . . . , f (λn).

Corollary

If A is singular the algebraic multiplicities of 0 with respect to A` and with
respect to A, are equal for any positive integer `.
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A polynomial f (A) is said to annihilate A if F (A) = 0. If f annihilates A,
αf also annihilates A.

For any squae matrix A, there exists a non-zero annihilating polynomial.
This also follows from the fact that I ,A, . . . ,An2 are linearly dependent in
f n×n.

Does there exist a monic polynomial annihilating A? The answer is
affirmative by the following theorem.

Cayley - Hamilton theorem. For every matrix A, the characteristic
polynomial of A annihilates A. That is, every matrix satisfies its own
characteristic equation.

Simple proof? We have χA(λ) = |λI − A|. Replace λ by A, shall we get
the Cayley - Hamilton theorem.
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Two main uses of Cayley-Hamilton theorem

1 To evaluate large powers A.

2 To evaluate a polynomial in A with large degree even if A is singular.

3 To express A−1 as a polynomial in A whereas A is non-singular.

Definition

A monic polynomial of the least degree which annihilates A is called a
minimal polynomial of A, denoted by m(λ).

Minimal polynomial of A is unique. Suppose k is the minimum degree
of a nonzero polynomial annihilating A and f & g are two monic
polynomials of degree k annihilating A.

Then h = f − g also annihilates A and has degree less than k, so h = 0
and f = g .
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By Cayley-Hamilton theorem, the degree of the minimal polynomial of an
n × n matrix A is at most n.

Theorem

The minimal polynomial of A divides every polynomial which annihilates A.

Proof. Let f (λ) be the minimal polynomial of A and let g(A) = 0. Since
f 6= 0, there exist polynomials q(λ) and r(λ) such that
g(λ) = f (λ)a(λ) + r(λ) where deg(r(λ)) < deg(f (λ)).

Then 0 = g(A) = f (A)q(A) + r(A) = r(A). Thus r(λ) annihilates A. By
the minimality of f , r(λ) = 0, so f divides g .

Thus the minimal polynomial not only has the least degree among the
nonzero polynomials annihilating A but also divides each of them.

The minimal polynomial of A divides the characteristic polynomial of A.
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How to find the minimal polynomial?

1 Once an annihilating polynomial g(λ) is known, the search for the
minimal polynomial can be restricted to the factors of g(λ).

2 If A is idempotent, then λ2 − λ annihilates A, so the minimal
polynomial of A is λ, λ− 1, or λ2 − λ.

3 If A is neither 0 or I , the minimal polynomial of A is λ2 − λ.

Theorem

A complex number α is a root of the minimal polynomial of A iff α is a
characteristic root of A.

Proof. α is a root of the minimal polynomial, mA(λ) of A.

Then mA(α) = 0, hence χA(α) = mA(α)g(α). Thus α is a characteristic
root of A.

Converse?
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1 The distinct roots of the minimal polynomial coincides with those of
the characteristic polynomial.

2 The minimal polynomial of A coincides with the characteristic
polynomial of A if A has n distinct characteristic roots. A matrix A
with the property is said to be non-derogatory.

3 The minimal polynomial of a matrix need not be a product of distinct
linear factors.

4 The minimal polynomial of a diagonal matrix A is
∏k

i=1(λ− di )
where d1, d2, . . . , dk are the distinct entries of A.
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Theorem

Similar matrices have the same minimal polynomial.

Proof. Let B = P−1AP. Then Bk := P−1AkP, for all k ≥ 0 and
f (B) = P−1f (A)P for any polynomial f . Thus f (B) = 0 ⇐⇒ f (A) = 0,
so A and B have the same minimal polynomial.

∴ We can define the minimal polynomial of a linear operator φ on a vector
space V as the minimal polynomial of the matrix of φ with respect to any
basis of V .

If f is any polynomial and A is the matrix of φ with respect to a basis B,
then f (A) is the matrix of f (φ) with respect to B. Thus
f (A) = 0 ⇐⇒ f (φ) = 0, and the minimal polynomial of φ is the monic
polynomial of the least degree which annihilates φ.
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We have seen that every matrix is similar to an upper triangular matrix.
But not every matrix is similar to a diagonal matrix.

Example

Suppose A =

[
0 1
0 0

]
is similar to a diagonal matrix D. Since

χA(λ) = χD(λ), both the characteristic roots of D are 0. Thus D = 0,
which is impossible.

Definition

A matrix is semi-simple or diagonalable if it is similar to a diagonal
matrix.

Let A be the matrix of a linear operator φ on V with respect to some basis.

A is semisimple ⇐⇒ there is a coordinate system (with the same origin)
each of whose coordinate axes is left invariant by φ.
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Suppose A is semisimple and P−1AP = D := diag(d1, d2, . . . , dn). Then
AP = PD, so AP∗j = djP∗j . Thus the columns of P are linearly
independent eigenvectors of A (corresponding to the diagonal entries of D
in the same order).

Conversely, if A has n linearly independent eigenvectors and P is the
matrix formed with these vectors as the columns, then P−1AP is diagonal.

Let A be an n × n matrix. TFAE

1 A is semisimple,

2 the minimal polynomial of A is a product of distinct linear factors or
equivalently, there exists an annihilating polynomial of A which is a
product of distinct linear factors,

3 all eigenvalues of A are regular,

4 the sum of the eigenspaces of A is Cn,

5 A has n linearly independent eigenvectors.
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An n × n matrix with n distinct eigenvalues is semisimple (because if
all the characteristic roots of A are distinct, then each is simple and
so regular).

An idempotent matrix is semisimple because λ(λ− 1) annihilates an
idempotent matrix.

Let A be an n × n matrix. TFAE.

1 A is semisimple and has rank r .
2 There exists a nonsingular matrix P of order n and a diagonal

nonsingular matrix ∆ of order r such that A = P

[
∆ 0
0 0

]
P−1.

3 There exist nonzero scalars δ1, δ2, . . . , δn and vectors u1, u2, . . . , un

and v1, v2, . . . , vn ∈ Cn such that vT
i uj = δij for all i , j and

A =
∑n

i=1 δiuiv
T
i .

4 There exist matrices R, S and ∆ of orders n × r , r × n and r × r
respectively such that D is diagonal and nonsingular, SR = I and
A = R∆S .
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